Australia's Domestic Submarine Design Capabilities ### **Options for the Future Submarine** n the mid-2020s, the Royal Australian Navy (RAN) will retire the HMAS *Collins*, the oldest of Australia's *Collins*-class submarines, when it reaches the end of its 30-year service life. Over the course of the following decade, the other five submarines that constitute the *Collins* class also could face retirement when their respective service lives terminate. Australia intends to acquire 12 new submarines to replace the *Collins*-class vessels. This replacement submarine—known as the Future Submarine—will be designed to travel farther, stay on patrol longer, support more missions, and provide more capabilities than the *Collins* vessels. Acquiring these new submarines will be the largest and most complex defence procurement in Australia's history, and the Australian Government is considering having the vessels designed domestically and built in South Australia. However, because Australia has never designed a submarine, the Australian Department of Defence (AUS DoD) sought outside help to assess the domestic engineering and design skills that industry and Government will need to design the vessels, the skills that they currently possess, and ways to fill any gaps between the two. In November 2009, the AUS DoD engaged RAND to conduct such an evaluation of Australia's capabilities and capacities to design conventional submarines. ### Australia's Submarine Design Skills Gap RAND assembled a team that included a former CEO of the Australian Defence Science and Technology Organisation, a former director of the U.S. Navy Nuclear Propulsion Program's Resource Management division, a former director of the U.S. Naval Sea Systems Command's Submarine/Submersible Design and System Engineering unit, a former technical director of the U.S. Navy's *Virginia*-class acquisition programme, a former director of naval architecture at Electric Boat Corporation, and a former ### Abstract Australia will need a domestic workforce of roughly 1,000 skilled draftsmen and engineers in industry and Government to create and oversee the design of a new, conventionally powered submarine for the Royal Australian Navy. Such a workforce does not exist in Australia today, but one could be cultivated over the next 15 to 20 years under the right circumstances. By collaborating with foreign design partners rather than relying exclusively on a domestic design workforce, Australia could shorten the duration and lessen the costs of designing a new submarine. commanding officer of a RAN submarine to conduct the evaluation. After reviewing the current literature on submarine design and engineering, analyzing historical design workload data from the United Kingdom's (UK's) Upholder programme and the Collins programme, and surveying industry and Government representatives on current and expected design practices, the team estimated that designing a conventional submarine today would require an effort of 8 to 12 million man-hours (MMH) over 15 years from a workforce of fully proficient, experienced submarine design personnel. This translates into a labour pool that, at its peak, would involve 600-900 submarine-proficient draftsmen and engineers in industry plus 80-175 oversight personnel in Government. The RAND team found that while Government employs enough oversight personnel to meet its peak demand in most skill areas (although the availability of some may be in question insofar as they are involved with other naval and commercial programmes), such is not the case for Australian industry. As the accompanying table RAND RESEARCH AREAS CHILDREN AND FAMILIES EDUCATION AND THE ARTS ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INFRASTRUCTURE AND TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY TERRORISM AND HOMELAND SECURITY This product is part of the RAND Corporation research brief series. RAND research briefs present policy-oriented summaries of published, peer-reviewed documents. #### Corporate Headquarters 1776 Main Street P.O. Box 2138 Santa Monica, California 90407-2138 TEL 310.393.0411 FAX 310.393.4818 © RAND 2011 www.rand.org | Report Documentation Page | | | | | Form Approved
OMB No. 0704-0188 | | |---|---|---|---|--|--|--| | maintaining the data needed, and c including suggestions for reducing | lection of information is estimated to
ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding ar
DMB control number. | ion of information. Send comments arters Services, Directorate for Information | regarding this burden estimate or mation Operations and Reports | or any other aspect of the 1215 Jefferson Davis | nis collection of information,
Highway, Suite 1204, Arlington | | | 1. REPORT DATE 2011 | 2 DEDORT TYPE | | | 3. DATES COVERED 00-00-2011 to 00-00-2011 | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT NUMBER | | | | Australia's Domestic Submarine Design Capabilities: Op
Future Submarine | | | ions for the | 5b. GRANT NUMBER | | | | | | | | 5c. PROGRAM E | LEMENT NUMBER | | | 6. AUTHOR(S) | | | | 5d. PROJECT NU | JMBER | | | | | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | RAND Corporation | ZATION NAME(S) AND AE n,National Security 8,Santa Monica,CA | Research Division,1 | .776 Main | 8. PERFORMING ORGANIZATION REPORT NUMBER | | | | 9. SPONSORING/MONITO | RING AGENCY NAME(S) A | ND ADDRESS(ES) | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT
ic release; distributi | on unlimited | | | | | | 13. SUPPLEMENTARY NO | OTES | | | | | | | Government to cre
Australian Navy. S
next 15 to 20 years
than relying exclus
the costs of designi | a domestic workfor
ate and oversee the
uch a workforce do
under the right circ
ively on a domestic
ng a new submarine | design of a new, cor
bes not exist in Austr
cumstances. By colla
design workforce, A | nventionally power
ralia today, but on
aborating with for | ered submari
ne could be c
reign design | ne for the Royal
ultivated over the
partners rather | | | 15. SUBJECT TERMS | | | | 40.349.00= | | | | 16. SECURITY CLASSIFICATION OF: | | | 17. LIMITATION OF ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF
RESPONSIBLE PERSON | | | a. REPORT | b. ABSTRACT | c. THIS PAGE | Same as | 5 | | | unclassified Report (SAR) unclassified unclassified shows, companies in Australia today do not employ as many experienced submarine draftsmen and engineers with certain skills as they would need to meet expected peak demands at the 8 MMH and 12 MMH levels. How would the programme fare if Australia were to draw solely from this current industry pool of domestic draftsmen and engineers to design the Future Submarine? As the table shows, that pool totals 475 draftsmen and engineers, many of whom may be engaged in supporting the *Collins*-class or other naval programmes and thus unavailable for a new submarine design team. It is entirely possible that as few as 20 percent of today's workforce might be available to work on the new submarine. To explore this issue, RAND constructed a simulation model to gauge how different numbers of draftsmen and engineers with various levels of proficiency would affect a 15-year design effort involving 8 MMH. The model found that if Australia were to assemble a design workforce numbering 20 percent of today's submarine-experienced labour pool (equal to some 100 draftsmen and engineers), the effort to design the Future Submarine would take an additional four years to complete (19 years versus 15 years) and involve 20 percent more man-hours. If the assembled design workforce numbered 40 percent of today's labour pool (equal to some 200 personnel), the design effort would require an additional three years and 15 percent more man-hours. ## Industry and Government Options for Closing the Gap RAND's simulations suggest that Australia can avoid cost and schedule delays only by augmenting its current design workforce with 250–500 submarine-experienced personnel. The RAND team evaluated two basic options that industry could pursue to cultivate such submarine design expertise and an array of options that Government could adopt to close gaps in its engineering workforce. The team's analysis pointed out pros and cons in the options for industry and identified one preferred option that makes the most sense for Government. Industry Option 1: Hire and train personnel from within Australia. This would require recruiting and training draftsmen and engineers with no submarine experience. Not only would this workforce need more man-hours and a longer schedule to design the new submarine, it would need to shrink as the design programme nears completion. However, the result would be a capability to design submarines solely within Australia. Industry Option 2: Infuse submarine-experienced personnel from abroad. Adding submarine-experienced personnel from abroad to the design workforce—by recruiting Submarine-Experienced Draftsmen and Engineers Available in Australia Industry and the Peak Demands in Millions of Man-Hours, by Skill | | | | Maximum Demand | | |----------------|-------------------------------|------------------|----------------|--------| | Skill Competen | cies | Number Available | 8 MMH | 12 MMH | | Draftsmen | Electrical | 12 | 64 | 96 | | | Mechanical | 45 | 39 | 58 | | | Piping/HVAC | 5 | 58 | 86 | | | Structural/arrangements | 47 | 89 | 134 | | | Other | 96 | 39 | 58 | | Engineers | Signature analysis | 4 | 20 | 29 | | | Combat systems & ship control | 7 | 51 | 77 | | | Electrical | 16 | 39 | 58 | | | Fluids | 1 | 26 | 39 | | | Mechanical | 37 | 26 | 39 | | | Naval architecture | 19 | 64 | 96 | | | Planning & production | 2 | 13 | 20 | | | Structural/arrangements* | * | * | * | | | Testing | 1 | 7 | 10 | | | Management | 1 | 13 | 20 | | | Engineering support | 160 | 26 | 39 | | | Other engineering | 22 | 39 | 58 | | Total | | 475** | 613 | 917 | ^{*} Grouped with naval architecture. ^{**} Demands from other programmes may result in few (if any) personnel being available to support a new submarine design. internationally, by having Australia-based companies draw from their international offices, or by partnering with another country's design organization—would shorten the schedule and lessen the cost increase. The advantage of this approach would be that as the new design programme winds down, international personnel could return to their home countries. The disadvantage: New submarine design programmes in the United States and UK may preclude the availability of experienced submarine design personnel from those countries, and Australia may not be left with the total capability needed to design a new submarine. Preferred Government Option: Draw core personnel from the *Collins* class to start the Future Submarine programme, then grow new personnel. This would draw a core group of technical personnel from the workforce supporting the *Collins* class and other maritime programmes and hire additional personnel both as replacements for that core and as a way to fill out the Future Submarine programme. This option would draw from the *Collins*-class experience, reduce the risk of under-resourcing the *Collins* class and other programmes, and likely incur reasonable costs in training. | This research brief describes work done for the RAND National Security Research Division documented in Australia's Submarine Design Capabilities and Capacities: Challenges and Options for the Future Submarine by John Birkler, John F. Schank, Jessie Riposo, Mark V. Arena, Robert W. Button, Paul DeLuca, James Dullea, James G. Kallimani, John Leadmon, Gordon T. Lee, Brian McInnis, Robert Murphy, Joel B. Predd, and Raymond H. Williams, MG-1033-AUS (available at http://www.rand.org/pubs/monographs/MG1033.html), 2011, 310 pp., \$42, ISBN: 978-0-8330-5057-1. This research brief was written by Gordon T. Lee. The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors. RAND® is a registered trademark. | |--| | RAND Offices Santa Monica, CA • Washington, DC • Pittsburgh, PA • New Orleans, LA/Jackson, MS • Boston, MA • Doha, QA • Abu Dhabi, AE • Cambridge, UK • Brussels, BE | # NATIONAL SECURITY RESEARCH DIVISION CHILDREN AND FAMILIES **EDUCATION AND THE ARTS** **ENERGY AND ENVIRONMENT** HEALTH AND HEALTH CARE INFRASTRUCTURE AND TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING **PUBLIC SAFETY** SCIENCE AND TECHNOLOGY TERRORISM AND HOMELAND SECURITY The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. This electronic document was made available from www.rand.org as a public service of the RAND Corporation. ## Support RAND Browse Reports & Bookstore Make a charitable contribution ## For More Information Visit RAND at www.rand.org Explore the RAND National Security Research Division View document details ### Research Brief This product is part of the RAND Corporation research brief series. RAND research briefs present policy-oriented summaries of individual published, peer-reviewed documents or of a body of published work. ### Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see <u>RAND Permissions</u>.